
1

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 1/65Chapter 21: Introduction to C Programming LanguageRef. Page

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 2/65Chapter 21: Introduction to C Programming LanguageRef. Page

Learning ObjectivesLearning Objectives

In this chapter you will learn about:

§ Features of C

§ Various constructs and their syntax

§ Data types and operators in C

§ Control and Loop Structures in C

§ Functions in C

§ Writing programs in C

395

2

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 3/65Chapter 21: Introduction to C Programming LanguageRef. Page

FeaturesFeatures

§ Reliable, simple, and easy to use

§ Has virtues of high-level programming language with
efficiency of assembly language

§ Supports user-defined data types

§ Supports modular and structured programming concepts

§ Supports a rich library of functions

§ Supports pointers with pointer operations

§ Supports low-level memory and device access

§ Small and concise language

§ Standardized by several international standards body

395

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 4/65Chapter 21: Introduction to C Programming LanguageRef. Page

C Character SetC Character Set

~ `! @ # % ^ & * () _
| \ { } [] : ; " ' , . ? /

−
+ = < >

93

31Special characters

100, 1, 2, …, 9Digits

26a, b, c, …, zLowercase alphabets

26A, B, C, …, ZUppercase alphabets

TotalValid CharactersCategory

396

3

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 5/65Chapter 21: Introduction to C Programming LanguageRef. Page

ConstantsConstants

§ Constant is a value that never changes

§ Three primitive types of constants supported in C are:

§ Integer

§ Real

§ Character

396

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 6/65Chapter 21: Introduction to C Programming LanguageRef. Page

Rules for Constructing Integer
Constants
Rules for Constructing Integer
Constants

§ Must have at least one digit

§ + or – sign is optional

§ No special characters (other than + and – sign) are
allowed

§ Allowable range is:

§ -32768 to 32767 for integer and short integer
constants (16 bits storage)

§ -2147483648 to 2147483647 for long integer
constants (32 bits storage)

§ Examples are: 8, +17, -6

397

4

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 7/65Chapter 21: Introduction to C Programming LanguageRef. Page

Rules for Constructing Real Constants
in Exponential Form
Rules for Constructing Real Constants
in Exponential Form

§ Has two parts – mantissa and exponent - separated by
‘e’ or ‘E’

§ Mantissa part is constructed by the rules for constructing
real constants in fractional form

§ Exponent part is constructed by the rules for
constructing integer constants

§ Allowable range is -3.4e38 to 3.4e38

§ Examples are: 8.6e5, +4.3E-8, -0.1e+4

397

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 8/65Chapter 21: Introduction to C Programming LanguageRef. Page

Rules for Constructing Character
Constants
Rules for Constructing Character
Constants

§ Single character from C character set

§ Enclosed within single inverted comma (also
called single quote) punctuation mark

§ Examples are: ’A’ ’a’ ’8’ ’%’

397

5

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 9/65Chapter 21: Introduction to C Programming LanguageRef. Page

VariablesVariables

§ Entity whose value may vary during program
execution

§ Has a name and type associated with it

§ Variable name specifies programmer given name to
the memory area allocated to a variable

§ Variable type specifies the type of values a variable
can contain

§ Example: In i = i + 5, i is a variable

398

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 10/65Chapter 21: Introduction to C Programming LanguageRef. Page

Rules for Constructing Variables
Names
Rules for Constructing Variables
Names

§ Can have 1 to 31 characters

§ Only alphabets, digits, and underscore (as in last_name)
characters are allowed

§ Names are case sensitive (nNum and nNUM are different)

§ First character must be an alphabet

§ Underscore is the only special character allowed

§ Keywords cannot be used as variable names

§ Examples are: I saving_2007 ArrSum

398

6

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 11/65Chapter 21: Introduction to C Programming LanguageRef. Page

Data Types Used for Variable Type
Declaration
Data Types Used for Variable Type
Declaration

No value assignedNo storage allocatedvoid

Values in the range -32768 to 327672 bytes (16 bits)enum

character constants1 byte (8 bits)char

real constants with minimum 10 decimal
digits precision

8 bytes (64 bits)double

real constants with minimum 6 decimal digits
precision

4 bytes (32 bits)float

integer constants in the range
-2147483648 to 2147483647

4 bytes (32 bits)long

integer constants in the range
-32768 to 32767

2 bytes (16 bits)short

integer constants in the range
-32768 to 32767

2 bytes (16 bits)int

Used for Variables that can contain
Minimum Storage

Allocated
Data
Type

399

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 12/65Chapter 21: Introduction to C Programming LanguageRef. Page

int count;
short index;
long principle;
float area;
double radius;
char c;

Variable Type Declaration ExamplesVariable Type Declaration Examples

399

7

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 13/65Chapter 21: Introduction to C Programming LanguageRef. Page

Standard Qualifiers in CStandard Qualifiers in C

16 bits
32 bits

short
long

Size

+ or –
+ only

signed
unsigned

Sign

Cannot be modified once created
May be modified by factors outside program

const
volatile

Modifiability

Temporary variable
Attempt to store in processor register, fast
access
Permanent, initialized
Permanent, initialized but declaration
elsewhere

auto
register
static
extern

Lifetime

DescriptionModifierCategory

399

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 14/65Chapter 21: Introduction to C Programming LanguageRef. Page

Lifetime and Visibility Scopes of
Variables
Lifetime and Visibility Scopes of
Variables

§ Lifetime of all variables (except those declared as static) is
same as that of function or statement block it is declared in

§ Lifetime of variables declared in global scope and static is
same as that of the program

§ Variable is visible and accessible in the function or statement
block it is declared in

§ Global variables are accessible from anywhere in program

§ Variable name must be unique in its visibility scope

§ Local variable has access precedence over global variable of
same name

399

8

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 15/65Chapter 21: Introduction to C Programming LanguageRef. Page

KeywordsKeywords

§ Keywords (or reserved words) are predefined words whose
meanings are known to C compiler

§ C has 32 keywords

§ Keywords cannot be used as variable names

auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while

400

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 16/65Chapter 21: Introduction to C Programming LanguageRef. Page

CommentsComments

§ Comments are enclosed within \∗ and ∗ /

§ Comments are ignored by the compiler

§ Comment can also split over multiple lines

§ Example: /∗ This is a comment statement ∗ /

400

9

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 17/65Chapter 21: Introduction to C Programming LanguageRef. Page

OperatorsOperators

§ Operators in C are categorized into data access,
arithmetic, logical, bitwise, and miscellaneous

§ Associativity defines the order of evaluation when
operators of same precedence appear in an expression

§ a = b = c = 15, ‘=’ has R → L associativity

§ First c = 15, then b = c, then a = b is evaluated

§ Precedence defines the order in which calculations
involving two or more operators is performed

§ x + y ∗ z , ‘∗’ is performed before ‘+’

401

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 18/65Chapter 21: Introduction to C Programming LanguageRef. Page

Arithmetic OperatorsArithmetic Operators

2R → L ++x means pre-increment (increment the
value of x by 1 before using its value)

1L → R x++ means post-increment (increment
the value of x by 1 after using its value);

Increment;++

3L → RRemainder (or Modulus); x % y%

3L → RDivision; x / y/

3L → RMultiplication; x ∗ y∗

4L → RSubtraction; x - y-

4L → RAddition; x + y+

Arithmetic Operators

PrecedenceAssociativityMeaning with ExampleOperator

401

10

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 19/65Chapter 21: Introduction to C Programming LanguageRef. Page

14R → Lx %= 5 means x = x % 5%=

14R → Lx /= 5 means x = x / 5/=

14R → Lx ∗= 5 means x = x ∗ 5∗ =

14R → Lx -= 5 means x = x - 5-=

14R → Lx += 5 means x = x + 5+=

14R → Lx = y means assign the value of y to x =

2R → L--x means pre-decrement (decrement
the value of x by 1 before using its value)

1L → Rx-- means post-decrement (decrement
the value of x by 1 after using its value);

Decrement;--

Arithmetic Operators

PrecedenceAssociativit
y

Meaning with ExampleOperator

Arithmetic OperatorsArithmetic Operators

401

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 20/65Chapter 21: Introduction to C Programming LanguageRef. Page

13R → LIf z is true (non-zero), then the value returned
is x, otherwise the value returned is y

z?x:y

12L → ROR; x || y means either x or y should be true
(non-zero) for result to be true

||

11L → RAND; x && y means both x and y should be
true (non-zero) for result to be true

&&

7L → RNot equal to; x != y!=

7L → REqual to; x == y==

6L → RLess than or equal to; x <= y<=

6L → RGreater than or equal to; x >= y>=

6L → RLess than; x < y<

6L → RGreater than; x > y>

2R → LReverse the logical value of a single variable;
!x means if the value of x is non-zero, make it
zero; and if it is zero, make it one

!

Logical Operators

PrecedenceAssociativityMeaning with ExampleOperator

Logical OperatorsLogical Operators

402

11

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 21/65Chapter 21: Introduction to C Programming LanguageRef. Page

PrecedenceAssociativityMeaning with ExampleOperator

Bitwise Operators

2R → LComplement; ~x means
All 1s are changed to 0s and 0s to 1s

~

8L → RAND; x & y means x AND y&

10L → ROR; x | y means x OR y|

9L → RExclusive OR; x ^ y means x y^

5L → RLeft shift; x << 4 means shift all bits in x
four places to the left

<<

5L → RRight shift; x >> 3 means shift all bits
in x three places to the right

>>

14R → Lx >>= 3 means shift all bits in x three
places to the right and assign the result to x

>>=

14R → Lx <<= 4 means shift all bits in x four places
to the left and assign the result to x

<<=

14R → Lx ^= y means x = x ^ y^=

14R → Lx |= y means x = x | y|=

14R → Lx &= y means x = x & y&=

⊕

Bitwise OperatorsBitwise Operators

402

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 22/65Chapter 21: Introduction to C Programming LanguageRef. Page

2R → LAccess the value stored in the storage
location (address) pointed to by pointer
variable x

*x

2R → LAccess the address of variable x&x

1L → RAccess the member variable y of
structure x

x –›y

1L → RAccess the member variable y of
structure x

x.y

1L → RAccess yth element of array x; y starts
from zero and increases monotically up
to one less than declared size of array

x[y]

Data Access Operators

PrecedenceAssociativityMeaning with ExampleOperator

Data Access OperatorsData Access Operators

402

12

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 23/65Chapter 21: Introduction to C Programming LanguageRef. Page

15L → RSequential operator (x then y)x,y

2R → LReturn the value of x after converting
it from declared data type of variable
x to the new data type “type”

(type) x

2R → LEvaluate the size of data type “type”
in bytes

sizeof (type)

2R → LEvaluate the size of variable x in
bytes

sizeof (x)

1L → REvaluates function x with argument yx(y)

Miscellaneous Operators

Precedenc
e

Associativit
y

Meaning with ExampleOperator

Miscellaneous OperatorsMiscellaneous Operators

403

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 24/65Chapter 21: Introduction to C Programming LanguageRef. Page

Statements Statements

§ C program is a combination of statements written
between { and } braces

§ Each statement performs a set of operations

§ Null statement, represented by “;” or empty {} braces,
does not perform any operation

§ A simple statement is terminated by a semicolon “;”

§ Compound statements, called statement block, perform
complex operations combining null, simple, and other
block statements

403

13

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 25/65Chapter 21: Introduction to C Programming LanguageRef. Page

Examples of Statements Examples of Statements

§ a = (x + y) ∗ 10; /∗ simple statement ∗/

§ if (sell > cost) /∗ compound statement
follows ∗/
{

profit = sell – cost;
printf (“profit is %d”, profit);

}
else ∗/ null statement follows ∗/
{
}

403

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 26/65Chapter 21: Introduction to C Programming LanguageRef. Page

Simple I/O OperationsSimple I/O Operations

§ C has no keywords for I/O operations

§ Provides standard library functions for
performing all I/O operations

403

14

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 27/65Chapter 21: Introduction to C Programming LanguageRef. Page

Basic Library Functions for I/O
Operations
Basic Library Functions for I/O
Operations

Enables output of a multi-word stringputs()

Enables input of a string from keyboard. Spaces are accepted as part of the input
string, and the input string is terminated when Enter key is hit. Note that although
scanf() enables input of a string of characters, it does not accept multi-word
strings (spaces in-between).

gets()

Enables obtaining an output in a form specified by programmer (formatted
output). Format specifiers are given in Figure 21.6. Newline character “\n” is
used in printf() to get the output split over separate lines.

printf()

Enables input of formatted data from console (keyboard). Formatted input data
means we can specify the data type expected as input. Format specifiers for
different data types are given in Figure 21.6.

scanf()

Outputs a single character on console (screen).putchar() or
putch()

Inputs a single character from console and echoes it, but requires Enter key to be
typed after the character.

getchar()

Inputs a single character from console and echoes (displays) it.getche()

Inputs a single character (most recently typed) from standard input (usually
console).

getch()

MeaningsI/O Library
Functions

404

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 28/65Chapter 21: Introduction to C Programming LanguageRef. Page

Basic Format Specifiers for
scanf() and printf()
Basic Format Specifiers for
scanf() and printf()

string%s

character%c

real (double)%lf

real (float)%f

integer (long unsigned)%lu

integer (long signed)%ld

integer (short
unsigned)%u

integer (short signed)%d

Data TypesFormat
Specifiers

404

15

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 29/65Chapter 21: Introduction to C Programming LanguageRef. Page

Formatted I/O ExampleFormatted I/O Example

/∗ A portion of C program to illustrate formatted input and output ∗/

int maths, science, english, total;
float percent;

clrscr(); /∗ A C library function to make the screen clear ∗/
printf (“Maths marks = ”); /∗ Displays “Maths marks = ” ∗/
scanf (“%d”, &maths); /∗ Accepts entered value and stores in variable “maths” ∗/
printf (“\n Science marks = ”); /∗ Displays “Science marks = ” on next line because of \n ∗/
scanf (“%d”, &science); /∗ Accepts entered value and stores in variable “science” ∗/
printf (“\n English marks = ”); /∗ Displays “English marks = ” on next line because of \n ∗/
scanf (“%d”, &english); /∗ Accepts entered value and stores in variable “english” ∗/

total = maths + science + english;
percent = total/3; /∗ Calculates percentage and stores in variable “percent” ∗/

printf (“\n Percentage marks obtained = %f”, percent);
/∗ Displays “Percentage marks obtained = 85.66” on next line

because of \n ∗/

(Continued on next slide)

405

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 30/65Chapter 21: Introduction to C Programming LanguageRef. Page

Formatted I/O ExampleFormatted I/O Example

Output:
Maths marks = 92
Science marks = 87
English marks = 78
Percentage marks obtained = 85.66

(Continued from previous slide..)

405

16

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 31/65Chapter 21: Introduction to C Programming LanguageRef. Page

Preprocessor DirectivesPreprocessor Directives

§ Preprocessor is a program that prepares a program for
the C compiler

§ Three common preprocessor directives in C are:

§ #include – Used to look for a file and place its
contents at the location where this preprocessor
directives is used

§ #define – Used for macro expansion

§ #ifdef..#endif – Used for conditional
compilation of segments of a program

405

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 32/65Chapter 21: Introduction to C Programming LanguageRef. Page

#include <stdio.h>
#define PI 3.1415
#define AND &&
#define ADMIT printf (“The candidate can be admitted”);

#ifdef WINDOWS
.
.
.

Code specific to windows operating system
.
.
.

#else
.
.
.

Code specific to Linux operating system
.
.
.

#endif
.
.
.

Code common to both operating systems

Examples of Preprocessor
Directives
Examples of Preprocessor
Directives

406

17

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 33/65Chapter 21: Introduction to C Programming LanguageRef. Page

Standard Preprocessor
Directives in C
Standard Preprocessor
Directives in C

CategoryMeaningPreprocessor Directive

Simple

Null directive#

Removes a macro definition#undef macro Macro
Define a macro or string substitution#define macro/string

FileIncludes content of another file#include filename

Compiler specific settings#pragma name

Used to update code line number and filename#line linenum filename

Prints message when processed#error message

Token pasting operator##

same as #ifdefdefined

Operators
String forming operator#

Includes following lines if macro is not defined#ifndef imacro

Includes following lines if macro is defined#ifdef macro

Closes #if or #elif block#endif

Handles otherwise conditions of #if#else

Includes following lines if expr is true# elif expr

Conditional

Includes following lines if expr is true#if expr

407

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 34/65Chapter 21: Introduction to C Programming LanguageRef. Page

PointersPointers

§ C pointers allow programmers to directly access
memory addresses where variables are stored

§ Pointer variable is declared by adding a ‘∗’ symbol
before the variable name while declaring it.

§ If p is a pointer to a variable (e.g. int i, *p = i;)

§ Using p means address of the storage location of
the pointed variable

§ Using ∗p means value stored in the storage location
of the pointed variable

§ Operator ‘&’ is used with a variable to mean variable’s
address, e.g. &i gives address of variable i

407

18

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 35/65Chapter 21: Introduction to C Programming LanguageRef. Page

Illustrating Pointers ConceptIllustrating Pointers Concept

1000 i62

Location address Location
contents

Location
name

Address of i = 1000
Value of i = 62

int i = 62;
int ∗p;
int j;
p = &i; /∗ p becomes 1000 ∗/
j = ∗p; /∗ j becomes 62 ∗/
j = 0; /∗ j becomes zero ∗/
j = ∗(&i) /∗ j becomes 62 ∗/

408

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 36/65Chapter 21: Introduction to C Programming LanguageRef. Page

ArrayArray

§ Collection of fixed number of elements in which all
elements are of the same data type

§ Homogeneous, linear, and contiguous memory structure

§ Elements can be referred to by using their subscript or
index position that is monotonic in nature

§ First element is always denoted by subscript value of 0
(zero), increasing monotonically up to one less than
declared size of array

§ Before using an array, its type and dimension must be
declared

§ Can also be declared as multi-dimensional such as
Matrix2D[10][10]

408

19

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 37/65Chapter 21: Introduction to C Programming LanguageRef. Page

Illustrating Arrays ConceptIllustrating Arrays Concept

int marks[6];

Each element
being an int
occupies 2 bytes

marks[0] = 45
marks[1] = 84
.
.
.
marks[5] = 92

(a) An array of
integers having
6 elements

float price[4];

Each element
being a float
occupies 4 bytes

price[0] = 82.75
price[1] = 155.50
.
.
.
price[3] = 10.25

(b) An array of
real numbers
having 4 elements

char city[6];

Each element
being a char
occupies 1 byte

city[0] = ‘B’
city[1] = ‘O’
.
.
.
city[5] = ‘Y’

(c) An array of
characters
having 6 elements

92

63

82

66
84

45

1010

1008

1006

1004

1002

1000

10.25

250.00

155.50

82.75

1012

1008

1004

1000

Y

A

B
M
O
B

1005

1004

1003

1002

1001

1000

409

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 38/65Chapter 21: Introduction to C Programming LanguageRef. Page

StringString

§ One-dimensional array of characters terminated by a null
character (‘\0)’

§ Initialized at declaration as

§ char name[] = “PRADEEP”;

§ Individual elements can be accessed in the same way as
we access array elements such as name[3] = ‘D’

§ Strings are used for text processing

§ C provides a rich set of string handling library functions

410

20

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 39/65Chapter 21: Introduction to C Programming LanguageRef. Page

Library Functions for String HandlingLibrary Functions for String Handling

Reverse a stringstrrev

Set first n characters of a string to a given characterstrnset

Set all characters of a string to a given characterstrset

Find first occurrence of a given string in another stringstrstr

Find last occurrence of a given character in a stringstrrchr

Find first occurrence of a given character in a stringstrchr

Duplicate a stringstrdup

Compare only first n characters of two strings without regard to casestrnicmp

Compare two strings without regard to casestricmp

Compare only first n characters of two stringsstrncmp

Compare two stringsstrcmp

Copy only the first n characters of a string into anotherstrncpy

Copy a string into anotherstrcpy

Concatenate only first n characters of a string at the end of anotherstrncat

Concatenate (append) one string at the end of anotherstrcat

Convert all characters of a string to uppercasestrupr

Convert all characters of a string to lowercasestrlwr

Obtain the length of a stringstrlen

Used ToLibrary Function

410

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 40/65Chapter 21: Introduction to C Programming LanguageRef. Page

User Defined Data Types (UDTs)User Defined Data Types (UDTs)

§ UDT is composite data type whose composition is not
include in language specification

§ Programmer declares them in a program where they are
used

§ Two types of UDTs are:

§ Structure

§ Union

411

21

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 41/65Chapter 21: Introduction to C Programming LanguageRef. Page

StructureStructure

§ UDT containing a number of data types grouped together

§ Constituents data types may or may not be of different
types

§ Has continuous memory allocation and its minimum size is
the sum of sizes of its constituent data types

§ All elements (member variable) of a structure are publicly
accessible

§ Each member variable can be accessed using “.” (dot)
operator or pointer (EmpRecord.EmpID or EmpRecord →
EmpID)

§ Can have a pointer member variable of its own type, which
is useful in crating linked list and similar data structures

411

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 42/65Chapter 21: Introduction to C Programming LanguageRef. Page

struct Employee
{

int EmpID;
char EmpName[20];

} EmpRecord;

struct Employee
{

int EmpID;
char EmpName[20];

};

Struct Employee EmpRecord;
Struct Employee ∗pempRecord = &EmpRecord

Structure (Examples)Structure (Examples)

411

22

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 43/65Chapter 21: Introduction to C Programming LanguageRef. Page

UnionUnion

§ UDT referring to same memory location using several data
types

§ Mathematical union of all constituent data types

§ Each data member begins at the same memory location

§ Minimum size of a union variable is the size of its largest
constituent data types

§ Each member variable can be accessed using “,” (dot)
operator

§ Section of memory can be treated as a variable of one type
on one occasion, and of another type on another occasion

412

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 44/65Chapter 21: Introduction to C Programming LanguageRef. Page

unionNum
{

int intNum;
unsigned

unsNum’
};
union Num Number;

Union ExampleUnion Example

412

23

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 45/65Chapter 21: Introduction to C Programming LanguageRef. Page

Difference Between Structure and
Union
Difference Between Structure and
Union

§ Both group a number of data types together

§ Structure allocates different memory space contiguously
to different data types in the group

§ Union allocates the same memory space to different
data types in the group

412

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 46/65Chapter 21: Introduction to C Programming LanguageRef. Page

Control StructuresControl Structures

§ Control structures (branch statements) are decision
points that control the flow of program execution based
on:

§ Some condition test (conditional branch)

§ Without condition test (unconditional branch)

§ Ensure execution of other statement/block or cause
skipping of some statement/block

413

24

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 47/65Chapter 21: Introduction to C Programming LanguageRef. Page

Conditional Branch StatementsConditional Branch Statements

§ if is used to implement simple one-way test. It can be in
one of the following forms:

§ if..stmt

§ if..stmt1..else..stmt2

§ if..stmt1..else..if..stmtn

§ switch facilitates multi-way condition test and is very
similar to the third if construct when primary test object
remains same across all condition tests

413

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 48/65Chapter 21: Introduction to C Programming LanguageRef. Page

Examples of “if” ConstructExamples of “if” Construct

§ if (i <= 0)
i++;

§ if (i <= 0)
i++;

else
j++;

§ if (i <= 0)
i++;

else if (i >= 0)
j++;

else
k++;

413

25

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 49/65Chapter 21: Introduction to C Programming LanguageRef. Page

switch(ch)
{

case ‘A’:
case ‘B’:
case ‘C’:

printf(“Capital”);
break;

case ‘a’:
case ‘b’:
case ‘c’:

printf(“Small”);
break;

default:
printf(“Not cap or small”);

}

Same thing can be written also using if
construct as:

if (ch == ‘A’ || ch == ‘B’ || ch ==
‘C’)

printf(“Capital”);
else if (ch == ‘a’ || ch == ‘b’ || ch
== ‘c’)

printf(“Small”);
else

printf(“Not cap or small”);

Example of “switch” ConstructExample of “switch” Construct

414

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 50/65Chapter 21: Introduction to C Programming LanguageRef. Page

Unconditional Branch StatementsUnconditional Branch Statements

§ Break: Causes unconditional exit from for, while, do,
or switch constructs. Control is transferred to
the statement immediately outside the block
in which break appears.

§ Continue: Causes unconditional transfer to next
iteration in a for, while, or do construct.
Control is transferred to the statement
beginning the block in which continue
appears.

§ Goto label: Causes unconditional transfer to statement
marked with the label within the function.

(Continued on next slide)

415

26

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 51/65Chapter 21: Introduction to C Programming LanguageRef. Page

§ Return [value/variable]: Causes immediate termination of
function in which it appears and
transfers control to the statement
that called the function. Optionally,
it provides a value compatible to
the function’s return data type.

(Continued from previous slide)

Unconditional Branch StatementsUnconditional Branch Statements

415

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 52/65Chapter 21: Introduction to C Programming LanguageRef. Page

Loop StructuresLoop Structures

§ Loop statements are used to repeat the execution of
statement or blocks

§ Two types of loop structures are:

§ Pretest: Condition is tested before each iteration to
check if loop should occur

§ Posttest: Condition is tested after each iteration to
check if loop should continue (at least, a single
iteration occurs)

415

27

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 53/65Chapter 21: Introduction to C Programming LanguageRef. Page

Pretest Loop StructuresPretest Loop Structures

§ for: It has three parts:

§ Initializer is executed at start of loop

§ Loop condition is tested before iteration to
decide whether to continue or terminate the
loop

§ Incrementor is executed at the end of each
iteration

§ While: It has a loop condition only that is tested
before each iteration to decide whether to
continue to terminate the loop

415

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 54/65Chapter 21: Introduction to C Programming LanguageRef. Page

Examples of “for” and “while”
Constructs
Examples of “for” and “while”
Constructs

§ for (i=0; i < 10; i++)
printf(“i = %d”, i);

§ while (i < 10)
{

printf(“i = %d”, i);
i++;
}

415

28

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 55/65Chapter 21: Introduction to C Programming LanguageRef. Page

Posttest Loop Construct
“do…while”
Posttest Loop Construct
“do…while”

§ It has a loop condition only that is tested after each
iteration to decide whether to continue with next
iteration or terminate the loop

§ Example of do…while is:

do {
printf(“i = %d”, i);
i++;

}while (i < 10) ;

416

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 56/65Chapter 21: Introduction to C Programming LanguageRef. Page

FunctionsFunctions

§ Functions (or subprograms) are building blocks of a
program

§ All functions must be declared and defined before use

§ Function declaration requires functionname, argument list,
and return type

§ Function definition requires coding the body or logic of
function

§ Every C program must have a main function. It is the
entry point of the program

416

29

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 57/65Chapter 21: Introduction to C Programming LanguageRef. Page

Example of a FunctionExample of a Function

int myfunc (int Val, int ModVal)
{

unsigned temp;
temp = Val % ModVal;
return temp;

}

This function can be called from any other place using
simple statement:

int n = myfunc(4, 2);

417

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 58/65Chapter 21: Introduction to C Programming LanguageRef. Page

Sample C Program (Program-1)Sample C Program (Program-1)

/∗ Program to accept an integer from console and to display
whether the number is even or odd ∗/

include <stdio.h>
void main()
{

int number, remainder;
clrscr(); /∗ clears the console screen ∗/
printf (“Enter an integer: ”);
scanf (“%d”, &number);
remainder = number % 2;
if (remainder == 0)

printf (“\n The given number is even”);
else

printf (“\n The given number is odd”);

getch();
}

418

30

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 59/65Chapter 21: Introduction to C Programming LanguageRef. Page

/∗ Program to accept an integer in the range 1 to 7 (both inclusive) from
console and to display the corresponding day (Monday for 1, Tuesday for
2, Wednesday for 3, and so on). If the entered number is out of range,
the program displays a message saying that ∗/

include <stdio.h>
include <conio.h>

#define MON printf (“\n Entered number is 1 hence day is MONDAY”);
#define TUE printf (“\n Entered number is 2 hence day is TUESDAY”);
#define WED printf (“\n Entered number is 3 hence day is WEDNESDAY”);
#define THU printf (“\n Entered number is 4 hence day is THURSDAY”);
#define FRI printf (“\n Entered number is 5 hence day is FRIDAY”);
#define SAT printf (“\n Entered number is 6 hence day is SATURDAY”);
#define SUN printf (“\n Entered number is 7 hence day is SUNDAY”);
#define OTH printf (“\n Entered number is out of range”);

void main()
{

int day;
clrscr();
printf (“Enter an integer in the range 1 to 7”);
scanf (“%d”, &day);

switch(day)

Sample C Program (Program-2)Sample C Program (Program-2)

(Continued on next slide)

418

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 60/65Chapter 21: Introduction to C Programming LanguageRef. Page

{
Case 1:

MON;
break;

Case 2:
TUE;
break;

Case 3:
WED;
break;

Case 4:
THU;
break;

Case 5:
FRI;
break;

Case 6:
SAT;
break;

Case 7:
SUN;
break;

defautl:
OTH;

}
getch();

}

Sample C Program (Program-2)Sample C Program (Program-2)
(Continued from previous slide..)

418

31

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 61/65Chapter 21: Introduction to C Programming LanguageRef. Page

/∗ Program to accept the radius of a circle from console and to calculate
and display its area and circumference ∗/

include <stdio.h>
include <conio.h>
define PI 3.1415

void main()
{

float radius, area, circum;
clrscr();
printf (“Enter the radius of the circle: ”);
scanf (“%f”, &radius);
area = PI ∗ radius ∗ radius;
circum = 2 ∗ PI ∗ radius;
printf (“\n Area and circumference of the circle are %f

and %f respectively”, area, circum);
getch();

}

Sample C Program (Program-3)Sample C Program (Program-3)

(Continued on next slide)

419

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 62/65Chapter 21: Introduction to C Programming LanguageRef. Page

/∗ Program to accept a string from console and to display the number of
vowels in the string ∗/

include <stdio.h>
include <conio.h>
include <string.h>

void main()
{

char input_string[50]; /∗ maximum 50 characters ∗/
int len;
int i = 0, cnt = 0;
clrscr();
printf (“Enter a string of less than 50 characters: \n”);
gets (input_string);
len = strlen (input_string);
for (i = 0; i < len; i++)
{

switch (input_string[i])

Sample C Program (Program-4)Sample C Program (Program-4)

(Continued on next slide)

420

32

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 63/65Chapter 21: Introduction to C Programming LanguageRef. Page

{
case ‘a’:
case ‘e’:
case ‘i’:
case ‘o’:
case ‘u’:
case ‘A’:
case ‘E’:
case ‘I’:
case ‘O’:
case ‘U’:

cnt++
}

}
printf (“\n Number of vowels in the string are: %d”, cnt);
getch();

}

Sample C Program (Program-4)Sample C Program (Program-4)

420

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 64/65Chapter 21: Introduction to C Programming LanguageRef. Page

/∗ Program to illustrate use of a user defined function. The program initializes an array of n elements
from 0 to n-1 and then calculates and prints the sum of the array elements. In this example n = 10 ∗/

#include <stdio.h>
#define SIZE 10

int ArrSum(int *p, int n);
{

int s, tot = 0;
for(s = 0; s < n; s++)
{

tot += *p;
p++;

}
return tot;

}
int main()
{

int i = 0, sum = 0;
int nArr[SIZE] = {0};
while(i < SIZE)
{

nArr[i] = i;
i++

}
sum = ArrSum(nArr, SIZE);
printf("Sum of 0 to 9 = %d\n", sum);
return 0;

}

Sample C Program (Program-5)Sample C Program (Program-5)

421

33

Computer Fundamentals: Pradeep K. Sinha & Priti SinhaComputer Fundamentals: Pradeep K. Sinha & Priti Sinha

Slide 65/65Chapter 21: Introduction to C Programming LanguageRef. Page

Key Words/PhrasesKey Words/Phrases

§ Arithmetic operators
§ Arrays
§ Assignment operators
§ Bit-level manipulation
§ Bitwise operators
§ Branch statement
§ Character set
§ Comment statement
§ Compound statement
§ Conditional branch
§ Conditional

compilation
§ Constants
§ Control structures
§ Format specifiers
§ Formatted I/O
§ Function
§ Keywords
§ Library functions
§ Logical operators
§ Loop structures

§ Macro expansion
§ Main function
§ Member element
§ Null statement
§ Operator associativity
§ Operator precedence
§ Pointer
§ Posttest loop
§ Preprocessor directives
§ Pretest loop
§ Primitive data types
§ Reserved words
§ Simple statement
§ Statement block
§ Strings
§ Structure data type
§ Unconditional branch
§ Union data type
§ User-defined data types
§ Variable name
§ Variable type declaration
§ Variables

421

